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Auditory Cortical Neurons Convey Maximal
Stimulus-Specific Information at Their Best Frequency

Nathan Montgomery and Michael Wehr
Institute of Neuroscience and Department of Psychology, University of Oregon, Eugene, Oregon 97403

Sensory neurons are often thought to encode information about their preferred stimuli. It has also been proposed that neurons convey the
most information about stimuli in the flanks of their tuning curves, where firing rate changes most steeply. Here we demonstrate that the
responses of rat auditory cortical neurons convey maximal stimulus-specific information about sound frequency at their best frequency,
rather than in the flanks of their tuning curves. Theoretical work has shown that stimulus-specific information shifts from tuning curve
slope to peak as neuronal variability increases. These results therefore suggest that with respect to the most informative regions of the
tuning curve, auditory cortical neurons operate in a regime of high variability.

Introduction
Sensory neurons are often thought of as feature detectors, whose
firing rates signal how close a stimulus is to the preferred stimulus
of the neuron. For example, neurons in the auditory cortex are
tuned for sound frequency, such that they have a best frequency
which evokes the maximal firing rate. If neurons are viewed as
feature detectors, one might intuitively expect them to convey
maximal information about sound frequency for the stimuli clos-
est to their best frequency. However, the flanks of the tuning
curve, which have the steepest slope, also provide information
about the stimulus. Indeed, it is in this region of the tuning curve
that small changes in sound frequency produce large changes in
the firing rate. Because the slope of the tuning curve is flat near its
peak, responses to neighboring frequencies will be similar, and
neurons may therefore be less able to discriminate frequencies
near their best frequency than frequencies in the flanks. Thus
these two intuitive views of neuronal tuning make quite different
predictions about the most informative region of the receptive
field.

Recently these two viewpoints were reconciled in an elegant
theoretical study, which used a new measure called stimulus-
specific information to demonstrate that both interpretations
can be correct depending on neuronal variability (Butts and
Goldman, 2006). When trial-to-trial variability is high, a model
neuron conveys maximal stimulus-specific information at the
peak of its tuning curve (Fig. 1a). As trial-to-trial variability is
reduced, the maximal information gradually shifts to the steep
flanks of the tuning curve (Fig. 1b,c). This unified framework
suggests that neural coding strategies depend critically on the
level of neuronal variability.

Which regions of the tuning curve convey maximal informa-
tion in real neurons? Butts and Goldman (2006) based their con-
clusions on synthetic data generated by model neurons with
parameters fit to published recordings. Here we addressed this
question directly by measuring the stimulus-specific information
that auditory cortical neurons convey about sound frequency.
We assume that the task of the neuron is to report sound fre-
quency by firing a certain number of spikes. We find that the
stimulus-specific information is always maximal at a neuron’s
best frequency. We never observed information peaks in the
flanks of tuning curves. This suggests that despite the high reli-
ability of auditory cortical neurons (DeWeese et al., 2003), they
are still too variable to be most informative at the flanks of their
tuning curves, and instead act as feature detectors for their best
frequency.

Materials and Methods
Physiology. We recorded from the left primary auditory cortex of anes-
thetized (30 mg/kg ketamine, 0.24 mg/kg medetomidine) male and fe-
male rats aged 20 –50 d postnatal. All procedures were in strict
accordance with the National Institutes of Health guidelines as approved
by the University of Oregon Animal Care and Use Committee. Record-
ings were made from primary auditory cortex (A1) as determined by the
frequency-amplitude tuning properties of cells and local field potentials,
based on the criteria of Polley et al. (2007). For single-unit recordings (21
cells) we used the loose cell-attached patch recording method (DeWeese
et al., 2003) with 3– 4 M! pipettes with an internal solution of 0.9%
saline. Subpial depth of cell-attached recordings ranged from 140 to 670
!m (mean: 383 !m), as determined from micromanipulator travel. For
multiunit recordings (86 recording sites) we used 1–2 M! tungsten elec-
trodes amplified with an A-M Systems 1800 extracellular amplifier
(bandpass filtering 300 –5000 Hz). Subpial depth of multiunit recordings
ranged from 296 to 583 !m (mean: 452 !m). Spike trains were extracted
by thresholding the extracellular voltage signal at 4 SDs.

Stimuli. To characterize frequency tuning, we used a pseudorandomly
interleaved tone array that consisted of either 17, 20, 22, or 50 frequencies
(logarithmically spaced from 1 to 40 kHz) at either 20, 40, or 60 dB SPL,
with 25 ms duration, 5 ms 10 –90% cosine-squared ramps, and a 350 or
500 ms interstimulus interval. Note that values of the stimulus-specific
information (see below) are not affected by the number or density of
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frequencies in the tone array. Number of repetitions was 10 – 40 for
single-unit and 20 for multiunit recordings. Stimuli were delivered with
either a Stax SR-303 speaker or a Pyramid PMBTW43 tweeter, in free-
field configuration (speaker located 15 cm lateral to, and facing, the
contralateral ear) in a sound isolation chamber with anechoic surface
treatment.

Analysis. We calculated stimulus-specific information (SSI) according to
the method of Butts and Goldman (2006) (see also Butts, 2003):

SSI" f # " !
r

p"r" f #isp"r#

where isp is the specific information (DeWeese and Meister, 1999),

isp"r# " # !
f

p" f #log2 p" f # $ !
f

p" f "r#log2 p" f "r#

with sound frequency f and response r. We quantified spiking responses
r as the spike count in a 100 ms window following tone onset; using 50 or
75 ms windows did not change the results (data not shown). We did not
subtract spontaneous firing rates, which were 16.2 $ 32.2 Hz for multi-
unit recordings and 7.3 $ 16.3 Hz for cell-attached recordings (mean $

SD). We used p" f # "
1

S
where S is the number of (equiprobable) fre-

quencies in a given tone array. We estimated the SD of the SSI using
bootstrap resampling (with 1000 resamples; varying this number over a
wide range did not affect the estimate).

Information measures are subject to bias because of the finite number
of trials in experiments, which causes undersampling of the relevant
probability distributions (for review, see Panzeri et al., 2007). We com-
pared two methods of correction for this bias. The first was to apply

the Treves-Panzeri correction to the specific
information (Treves and Panzeri, 1995):

isp corrected " isp # C1

where C1 "
"S # 1#"R # 1#

2Nln2
, R is the number

of unique spike counts r, and N is the number
of experimental tone-response combinations.
The second method was to compute the SSI as
above, but with all tone-response combina-
tions randomly shuffled. In this case, the re-
sponse is completely uncorrelated with the
stimulus and the true SSI is zero. However, the
direct estimate of the SSI produces a positive
value, due to bias, and we used this value aver-
aged across stimuli as an estimate of the bias.
The corrected SSI is then given by the
following:

SSIcorrected " SSI # %SSIshuf&

These two bias correction methods agreed very
closely (Fig. 2a, bottom; compare solid and
dashed lines), and we therefore picked one (the
shuffle correction) and used it for the remain-
der of the analysis. Both are probably slight
overestimates of the bias, since the corrected
information was sometimes slightly negative
for frequencies far from best frequency.

We note two further points about bias. First,
bias depends on the number of possible neuro-
nal responses, which differs tremendously if
one is comparing the information conveyed by
spike counts to the information conveyed by
temporal codes (as is commonly done). Since
we only consider spike count responses, this
difference in bias is not a concern. Moreover,
the bias for spike counts will be very small com-
pared with that for temporal codes. Second, the
bias corrections we used do not vary with tone

frequency (i.e., the bias is uniform across the entire tuning curve). Since
our goal here is to compare the SSI in different regions of the tuning
curve, our main results should be relatively unaffected by bias.

We obtained a tuning curve at each sound level by measuring trial-
averaged spike count as a function of sound frequency, and estimated
best frequency (at each sound level) as the ! of a Gaussian fit to this
tuning curve. We restricted our analysis to well defined tuning curves
according to the following criteria: (1) the goodness of Gaussian fit was
required to be R 2 ' 0.9, and (2) best frequency (as given by ! of the
Gaussian fit) was required to lie within the range of frequencies
presented.

Model. To illustrate how decreased trial-to-trial variability can shift the
maximal SSI from the peak to the flanks of the tuning curve (Fig. 1), we
used a model neuron to generate synthetic data. The responses (spike
count on each of 250 trials) of the model neuron were given by a tuning
curve with additive Gaussian-distributed noise. The tuning curve we
used was from an actual multiunit recording (Fig. 2a, the example re-
cording shown).

Results
We first used a simple model neuron to generate synthetic data to
characterize how SSI (see Materials and Methods) shifts from the
best frequency to the slope of the tuning curve as a function of
trial-to-trial variability. The model consisted of the tuning curve
from one of our multiunit recordings from primary auditory
cortex, combined with a variable amount of additive Gaussian-
distributed noise. When we set the trial-to-trial variability to be
relatively high, corresponding to a coefficient of variation (CV) of

0.01 0.03 0.1 0.3 1 3
0.3

1

3

10

CV

S
S

I a
t b

es
t f

re
qu

en
cy

S
S

I a
t m

ax
 s

lo
pe

0

50

100

fir
in

g 
ra

te
, H

z

low noise
CV=0.05

1.0 1.8 3.1 5.5 9.6 16.9 29.8
1

2

3

frequency, kHz

S
S

I, 
bi

ts

0

50

100

fir
in

g 
ra

te
, H

z

high noise
CV=0.20

1.0 1.8 3.1 5.5 9.6 16.9 29.8
0

1

frequency, kHz

S
S

I, 
bi

ts

1.0 1.8 3.1 5.5 9.6 16.9 29.8

0

1

2

3

CV=0.05

CV=0.20

CV=1.0

frequency, kHz

S
S

I, 
bi

ts

a

c

b

d

Figure 1. Simulation of the effect of variability on maximal SSI with synthetic data. a, Top, Frequency tuning curve of a
multiunit recording site in auditory cortex that was used to generate synthetic spike trains with additive Gaussian noise producing
high trial-to-trial variability (CV ( 0.20 at best frequency). Dotted lines indicate one SD. Bottom, SSI as a function of frequency.
Maximal SSI was aligned with peak of the tuning curve (vertical dashed line). b, Same tuning curve but with low trial-to-trial
variability (CV ( 0.05). Maximal SSI has now shifted to the points of steepest slope in the tuning curve (vertical dashed lines). c, SSI
curves across a range of variability levels, showing the transition of maximal SSI from peak to slope of the tuning curve. d, The ratio
of the SSI at best frequency to SSI at maximum tuning curve slope, as a function of CV at best frequency. The horizontal dashed line
indicates a ratio of 1 (where SSI is equal for best frequency and slope), and the vertical dashed line indicates a CV of 0.24 (the
minimum CV in our sample of recordings; see Fig. 3c).
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the spike count at best frequency of )0.2,
SSI was maximal at the peak of the tuning
curve (Fig. 1a). At a much lower variabil-
ity, the SSI at the slopes of the tuning
curve became greater than that at the best
frequency (Fig. 1b). The gradual shift
from maximal SSI at the slopes to maxi-
mal SSI at best frequency can be seen in
Figure 1c. These results agree well with
those of Butts and Goldman (2006). To
quantify this shift, we took the ratio of the
SSI at best frequency to the SSI at the
steepest slope of the tuning curve (Fig.
1d). For very low variability (CV
*)0.06), SSI at the slopes was greater
than at best frequency, producing a ratio
*1. At higher variability, SSI was greater
at best frequency, producing a ratio '1.
At even higher variability (CV ')0.3),
the overall amount of SSI drops, and also
flattens out as a function of frequency (for
example, see the curve for CV ( 1.0 in Fig.
1c). As a result, the ratio in Figure 1d be-
comes noisy as the variability surpasses
CV ( 1. These results characterize how
the location of peak SSI depends on trial-
to-trial variability, and in particular show
that the transition from slope to best fre-
quency occurs over the CV range from
)0.05 to 0.1.

We next measured the stimulus-spe-
cific information that auditory cortical
neurons conveyed about sound frequency.
Figure 2a (top) shows the frequency tun-
ing curve of a typical multiunit recording
site measured at 60 dB SPL. The best fre-
quency for this tuning curve was 3.3 kHz,
as given by ! from the Gaussian fit. The
SSI (Fig. 2a, bottom) was essentially con-
gruent with the tuning curve, with a peak
(at 3.3 kHz) at the best frequency, and no
major peaks on the flanks of the tuning
curve. Thus this recording site conveyed
maximal information at best frequency
rather than at the slopes of the tuning
curve.

The example in Figure 2a was typical of
our population of single-unit and multi-
unit recordings. Figure 2b (top) shows the
population-average tuning curve across
our sample of 197 tuning curves from 21
single-unit and 86 multiunit recordings
(tuning curves were collected at more
than one sound level for each site). The
population-average SSI for these record-
ing sites (Fig. 2b, bottom) was maximal at
best frequency, and showed no peaks at
the slopes of the tuning curve. This was also true for individual
recording sites across the population. Figure 3a shows the rela-
tionship between the best frequency and the sound frequency at
which SSI was maximal, for each tuning curve. Points cluster
around the line of unity slope, indicating that SSI is maximal at or
near best frequency for individual sites as well as for the popula-

tion average. A direct comparison of the amount of information
at the best frequency and at the points of steepest slope for each
tuning curve (Fig. 3b) demonstrates that the SSI was greater at the
best frequency than at the point of maximum slope of the tuning
curve (i.e., most points lie above the line of unity). This difference
was highly significant ( p *10+10, paired two-tailed t test). This
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Figure 2. Maximal SSI is aligned to best frequency in auditory cortical neurons. a, Top, Frequency tuning curve of a multiunit
recording in A1. Dots indicate mean spike counts, error bars indicate SD, and solid line indicates a Gaussian fit. Bottom, SSI for this
recording as a function of frequency. Solid line is SSI with Treves-Panzeri bias correction, dashed line is SSI with shuffle bias
correction, and dotted lines indicate SD estimated by bootstrap resampling. b, Top, Population-average tuning curve, aligned to
best frequency for each recording site. Bottom, Population-average SSI. Dotted lines indicate SEM (n ( 197: 164 tuning curves
from 86 multiunit recording sites, and 33 tuning curves from 21 single units; this includes tuning curves collected at multiple sound
levels per neuron).
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Figure 3. Maximal SSI corresponds to best frequency, not steepest slope. a, For each tuning curve, the frequency at which SSI
was maximal is plotted against best frequency. Values cluster around the line of unity slope (solid line). In a– c, black dots indicate
multiunit recordings, red dots indicate single-unit recordings, and dot radius is proportional to maximal SSI. b, For each tuning
curve, the SSI at best frequency is plotted against the SSI at the two points of steepest slope of the tuning curve (one dot each for
the rising and falling slopes). Values were truncated at zero. Values cluster above the line of unity slope (solid line), indicating that
the SSI at best frequency is greater than the SSI at the steepest slope. c, The ratio of the SSI at best frequency to SSI at maximum
tuning curve slope, as a function of CV at best frequency. The horizontal dashed line indicates a ratio of 1 (corresponding to equal
SSI for best frequency and slope), and the vertical dashed line indicates a CV of 0.24 (the minimum CV in our sample of recordings;
compare with Fig. 1d).
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was also true for each sound level computed independently (data
not shown).

These results suggest that, as a population and individually,
auditory cortical neurons have far too much trial-to-trial vari-
ability in spike count to convey maximal SSI at their tuning curve
slopes. We wondered whether neurons in our sample with lower
variability might show a trend toward shifting information from
the best frequency to the slopes of their tuning curves. To char-
acterize the amount of trial-to-trial variability in our recordings
and whether this shifts the location of peak SSI, we plotted the
ratio of the SSI at best frequency to the SSI at the steepest slope of
the tuning curve against the CV at best frequency, for all tuning
curves in our sample (Fig. 3c). This is the same analysis shown for
synthetic data in Figure 1d. The lowest CV in our sample was 0.24,
which was well above the transition range of 0.05– 0.1 that we
identified by synthetically manipulating variability (compare
with Fig. 1d). This value of CV ( 0.24 is indicated by the vertical
dashed line in Figure 3c and for reference in Figure 1d. This
suggests that all the neurons in our sample had much greater
trial-to-trial variability than would be required to show a peak in
the SSI in the flanks of their tuning curves.

As another test of whether neurons in our sample might show
a trend toward shifting information from the best frequency to
the slopes of their tuning curves depending on their trial-to-trial
variability, we performed a median split of our population into
recording sites with high and low trial-to-trial variability in spike
count. The difference between the SSI at best frequency and at the
slope was not significantly different in these two halves of the
population (paired one-tailed t test). This suggests that the cod-
ing advantage of best frequency over the tuning curve slope is
consistent across the population as a whole.

We wondered whether trial-to-trial variability might vary as a
function of sound level, and whether this might shift the location
of maximal SSI for tuning curves measured at different sound
levels. The CV at best frequency decreased slightly but signifi-
cantly with increasing sound level (linear regression slope: +0.01
dB+1, p * 10+7), indicating that spike count responses were
more reliable for louder tones. However, the ratio of the SSI at
best frequency to the SSI at the steepest slope of the tuning curve
(same ratio as Fig. 3c) was independent of sound level. Thus even
though louder sounds produced more reliable responses, these
were still far too variable to produce a shift in the location of
maximal SSI in the tuning curves. For even louder sounds (for
example, at 80 dB), auditory cortical neurons responded over
almost the entire audible frequency range, and the SSI therefore
decreased overall and flattened out as a function of frequency
(data not shown).

How much do these results depend on the specifics of how we
measured neuronal responses? To test whether these findings
extend beyond spike counts to temporal coding, we reanalyzed
our multiunit data using first-spike latency as the response mea-
sure. Tuning curves defined by first-spike latency were well
tuned and inversely related to spike count tuning curves (sup-
plemental Fig. S1a, available at www.jneurosci.org as supplemen-
tal material). The SSI was essentially congruent with the tuning
curve, regardless of whether responses were defined by latency or
spike count, and independent of response variability (supplemental
Fig. S1b, available at www.jneurosci.org as supplemental material).
This suggests that our findings are robust and do not critically de-
pend on the response measure, and indeed hold for both temporal
and rate codes.

Discussion
Here we have demonstrated that auditory cortical neurons convey
maximal stimulus-specific information about sound frequency at
their best frequency, rather than in the flanks of their tuning
curves. This finding agrees well with the intuitive notion of neu-
rons as feature detectors, whose spiking conveys information
about the presence of their preferred stimulus. In contrast, our
results do not support the equally intuitive notion that neurons
should best encode differences between stimuli in the high-slope
region of their tuning curves. Theoretical work has shown that the
maximal SSI shifts from tuning curve slope to peak as neuronal
variability increases (Butts and Goldman, 2006). We did not ob-
serve such a shift in the maximal SSI, suggesting that all of our
auditory cortical neurons had too much trial-to-trial variability
to show peak SSI in the slopes of their tuning curves, at least with
respect to frequency encoding and in our experimental condi-
tions. These findings did not depend on the response measure,
and were comparable whether we used a temporal code or a rate
code.

Many studies have reported relatively high trial-to-trial re-
sponse variability across different sensory cortical areas (Dean,
1981; Softky and Koch, 1993; Kara et al., 2000; Arabzadeh et al.,
2004; Carandini, 2004), suggesting that these findings might gen-
eralize to other cortical areas. A common benchmark for trial-to-
trial variability is the Poisson process, in which spikes occur
randomly and independently, and which has a variance-to-mean
ratio (also called the Fano factor) of 1. Cortical neurons are typ-
ically reported to be supra-Poisson (variance-to-mean '1), and
our population data are consistent with this: average variance-
to-mean ratio at best frequency was 1.5 for single-unit and 3.2
for multiunit recordings. However, 47% of our single-unit
recordings were sub-Poisson, and the lowest variance-to-
mean ratio in our sample was 0.22, consistent with a previous
report that a subset of auditory cortical neurons show low
variability (DeWeese et al., 2003). However, even these low
values of variability are still approximately an order of magni-
tude higher than that required to shift maximal information to
the slopes of the tuning curve (compare Figs. 3c and 1d; the
shift in the synthetic data occurred at CV 0.05– 0.1 or at
variance-to-mean 0.02– 0.05).

While frequency tuning is a fundamental aspect of auditory
cortical neurons, they can also show tuning to other acoustic
parameters (Wang et al., 2005). It is therefore possible that neu-
rons could convey maximal information in the slopes of their
tuning curves for acoustic parameters other than sound fre-
quency (McAlpine et al., 2001).

Maximal information in the flanks of a tuning curve indicates
that responses are informative for making fine frequency dis-
criminations between similar frequencies. In contrast, maximal
information at the peak of a tuning curve indicates that responses
are most informative about the coarse discrimination between
the best frequency and other, distant frequencies (Butts and
Goldman, 2006). Intuitively, coarse discriminations are robust to
the presence of high trial-to-trial variability, whereas fine dis-
criminations between firing rates are only possible when trial-to-
trial variability is low. Rats are capable of fine frequency
discriminations, with a discrimination limit of )3% (Talwar and
Gerstein, 1998), similar to that of other mammals (except hu-
mans). Our results that maximal SSI always occurred at best fre-
quency suggest that spike counts of individual cortical neurons
could support coarse discriminations, but that fine discrimina-
tions would require readout of a population code.
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Are these findings, which were obtained in anesthetized ani-
mals, expected to generalize to coding of sound frequency in
awake animals as well? Previous studies comparing response vari-
ability in A1 of awake and anesthetized rodents suggest that they
might. Anesthesia has been reported to either have no effect on
response variability (with equithesin; Gaese and Ostwald, 2001)
or to decrease trial-to-trial variability (barbiturate-ketamine;
Ter-Mikaelian et al., 2007) compared with awake rodents. Simi-
larly, increasing the depth of ketamine anesthesia can actually
decrease trial-to-trial variability in rat A1 (Kisley and Gerstein,
1999). If variability is the same or higher in awake animals than
under anesthesia, then maximal SSI would be expected to remain
at the best frequency, rather than shifting to tuning curve flanks,
which would be expected in a lower-variability regime. A direct
test of this would require frequency tuning curves in awake
animals.

Here we have only considered neurons individually, whereas a
population of neurons may be able to operate in a lower-noise
regime by averaging out uncorrelated noise (Butts and Goldman,
2006). Because trial-to-trial variability is correlated across neu-
rons (Zohary et al., 1994), a test of this idea would require tuning
curves from simultaneously recorded neurons. It would be very
interesting to see whether maximal SSI might shift from the
peak to the slope of tuning curves when SSI is calculated from
increasing numbers of simultaneously recorded auditory cor-
tical neurons.
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